
Storing Hierarchies in the ERROS Database

In Horizontal or Vertical? Beyond the Relational Database, I described in outline the
structure of the ERROS database, which stores each attribute iteration as a separate record,
linked to other records with a multipart key field.

I explained how the structure of the database is defined in the ERROS database – in other
words the ERROS database is defined by itself, rather than in program code. As each entity
type is given a number which is part of the key field, the data and application definitions and
user data could all be stored in a single file, but, for operational reasons, about ten files are
used. When a new entity type is created, no new file is required.

This means that the database handler can access an entity type by name, in this case
customer name, then a customer by name, XYZ Company, then an attribute of customer by
name, address, then an address by “name”, 23 Acacia Avenue, then an attribute of address by
name, delivery instructions, and then text representing those instructions.

Thus, in a hierarchical sense, we have gone down 6 levels to get to the final text.

.entity type/customer/XYZ Company/address/23 Acacia Avenue/delivery instructions/text

ERROS allows the “name” at each level to be up to 64 characters long, so that means that we
would need to be able to concatenate these together and that might mean a search term of
384 characters, yet, in ERROS the total key field length is only 28 bytes long. This is part of
the unique patented concepts of ERROS which allow a depth of 999,999,998 levels in a
hierarchy, all within the 28 bytes. In many cases the number of levels might be very much
larger than the sample above and the search term much longer.

In other database systems, even going down 6 levels would be a problem and might mean that
the length of the index or key field would need to increase by 64 bytes at each level.

The ERROS database can also store bi-directional relationships and the user can, subject to his
or her security level, navigate the relationships in either direction at the same, very high
speed. The ERROS mechanism for storing relationships will be described separately.

Because all ERROS data is stored in very few files, and these are opened when the operator
signs on, no joins are required and no files have to be opened when the operator elects to
navigate a relationship. Relationships can also be hierarchical – in other words a relationship
can be stored with another relationship.

Clearly there need to be many record formats to store, for instance, personal names, sales
order header records, sales order detail lines, product records, product movement records, etc.
Apart from menu records and one or two other controlling records, such as operator profiles,
the ERROS database handler does not need to understand the layout of any of the record
formats that might be found in any standard commercial or humanities application. The record
formats are not identified by the attribute name or number but by a simple method which will
be described separately.

22nd June 2017

Rob Dixon

rob.dixon@erros.co.uk

